Chain-Transfer Mechanisms of the Alternating Copolymerization of Carbon Monoxide and Ethene Catalyzed by Palladium(II) Complexes: Rearrangement to Highly Reactive Enolates

Martin A. Zuideveld,[†] Paul C. J. Kamer,[†] Piet W. N. M. van Leeuwen,^{*,†} Peter A. A. Klusener,^{*,‡} Hans A. Stil,[‡] and Cornelis F. Roobeek[‡]

> Institute for Molecular Chemistry University of Amsterdam, Nieuwe Achtergracht 166 1018 WV Amsterdam, The Netherlands Shell Research and Technology Centre, Amsterdam (Shell International Chemicals B. V.) P.O. Box 38000, 1030 BN Amsterdam, The Netherlands

> > Received March 18, 1998

Since the discovery¹ of the efficient alternating copolymerization of olefins and carbon monoxide catalyzed by palladium-(II) complexes there has been an increasing interest in these polymers,^{2,3} as well as in the chemistry to prepare them.^{2a,4} Mechanistic research has thus far concentrated on the insertion reactions.^{5,6} There have been many speculations on the chaintransfer mechanism,^{1,3,4,7} and the two chain-transfer mechanisms in Scheme 1 have been proposed.

Both chain-transfer mechanisms yield the same end groups, namely, ester and ethyl ketone groups in a 1:1 ratio. We report here on the preparation of the copolymer in monodeuterated methanol as the solvent. The positions of the deuterium incorporated show that the two mechanisms occur simultaneously in the dppp-based catalyst.

The results of the copolymerization of ethene and CO in CH₃-OH and CH₃OD are listed in Table 1.⁸ Surprisingly, the deuterium was found mainly in the ethyl ketone end groups as COCHDCH₃, while COCH₂CH₂D and COCH₂CH₃ end groups were obtained in smaller quantities. Only a negligible amount

(1) (a) Drent, E. *Eur. Pat. Appl.* **1984**, *121*, 965. (b) Drent, E.; van Broekhoven, J. A. M.; Doyle, M. J. J. Organomet. Chem. **1991**, *417*, 235. See also ref 9 cited therein.

(2) (a) Drent, E.; Budzelaar, P. H. M. Chem. Rev. **1996**, *96*, 663. (b) Brookhart, M.; Johnson, L. K.; Mecking, S. J. Am. Chem. Soc. **1996**, *118*, 267. (c) Kayaki, Y.; Shimizu, I.; Yamamoto, A. Bull. Chem. Soc. Jpn. **1997**, 70, 917. (d) Nozaki, K.; Sato, N.; Tonomura, Y.; Yasutomi. M.; Takaya, H.; Hiyima, T.; Matsubara, T.; Koga, N. J. Am. Chem. Soc. **1997**, *119*, 12779. (e) Kacker, S.; Sen, A. J. Am. Chem. Soc. **1997**, *119*, 10028.

(3) For the isospecific alternating copolymers see for example: (a) Bronco, S.; Consiglio, G.; Hutter, R.; Batistini, A.; Suter, U. W. *Macromolecules* **1994**, *27*, 4436. (b) Brookhart, M.; Wagner, M. I. *J. Am. Chem. Soc.* **1996**, *118*, 7219.

(4) (a) Lai, T.-W.; Sen, A. Organometallics 1984, 3, 866. (b) Johnson, L.
 K.; Killian, C. M.; Brookhart, M. J. Am. Chem. Soc. 1995, 117, 6414. (c)
 Valli, V. L. K.; Alper, H. J. Polym. Sci., Part A: Polym. Chem. 1995, 33, 1715

(5) (a) Keim, W.; Maas, H.; Mecking, S. Z. *Naturforsch.* 1995, *B50*, 430.
(b) Green, M. J.; Britovsek, G. J. P.; Cavell, K. J.; Skelton, B. W.; White, A. H. *J. Chem. Soc., Chem. Commun.* 1996, 1563.

(6) (a) Brookhart, M.; Rix, F. J. Am. Chem. Soc. 1995, 117, 1137. (b) van Asselt, R.; Gielens, E. E. C. G.; Rülke, R. E.; Vrieze, K.; Elsevier: C. J. J. Am. Chem. Soc. 1994, 116, 977. (c) Dekker: G. P. C. M.; Elsevier: C. J.; Vrieze, K.; van Leeuwen, P. W. N. M. Organometallics 1992, 11, 1598. (7) (a) Sen, A. Acc. Chem. Res. 1993, 26, 303. (b) Sen, A. In New Advances

(7) (a) Sen, A. Acc. Chem. Res. 1993, 26, 303. (b) Sen, A. In New Advances in Polyolefins; Chung, T. C., Ed.; Plenum Press: New York, 1993; p 47. (c) Xu, F. Y.; Zhao, A. X.; Chien, J. C. W. Makromol. Chem. 1993, 194, 2579.
(d) Tóth, I.; Elsevier: C. J. J. Chem. Soc., Chem. Commun. 1993, 529. (e) Busico, V.; Corradini, P.; Landriani, L.; Trifuoggi, M. Makromol. Chem., Rapid Commun. 1993, 14, 261.

(8) The relatively high temperature was applied to yield low molecular weight products, allowing accurate end group analysis.

of deuterium was found to be incorporated in the backbone of the polymer (eq 1).

$$H_2C=CH_2 + n CO + CH_3OD \xrightarrow{(dppp)Pd^{2+}} CH_3O(CCH_2CH_2)_{n-1}CCHCH_3 (1)$$

To check whether H/D exchange could have occurred after the product was formed, copolymer prepared in CH_3OH was suspended in CH_3OD and heated under reflux for 8 h with *p*-toluenesulfonic acid present, but introduction of deuterium was observed neither in the end groups nor in the backbone.

GC-MS analysis of the filtrate containing soluble oligomers showed the formation of ketoesters, and some diketones and diesters, suggesting that two independent chain-transfer mechanisms are operating.^{1b,2a} Mechanism B involves termination via methanolysis with CH₃OD, giving an ester end group and a palladium deuteride species. Subsequent initiation via insertion of ethene leads to [(dppp)PdCH₂CH₂D]⁺, and consequently to a COCH₂CH₂D end group.⁹ Mechanism A involves termination by *deuteration* of the palladium alkyl and initiation via insertion of CO into a palladium methoxy species. Thus, both mechanisms lead to COCH₂CH₂D end groups. The formation of the COCH₂-CH₃ end groups in CH₃OD can only be explained by mechanism B. Mechanism A always leads to deuterated end groups, while mechanism B leads to all three species via fast and reversible insertion of ethene.^{9,10} We do not expect that this would lead to as much as 46% COCHDCH₃ and only 26% COCH₂CH₂D. We propose that mechanism A must lead to the unexpected formation of excess COCHDCH₃ end groups, as is proven below.

As a model for the growing chain on the catalyst the complex $[(P-P)PdCH_2CH_2C(O) CH_3]^+CF_3SO_3^-$ (**3a**, P-P = dppp, **3b**, P-P = dppf) was prepared by consecutive insertions of CO and ethene into the methyl complexes **1a**,**b** (eq 2). Complexes **3a**,**b**

were identified by ¹H, ³¹P, and ¹³C NMR spectroscopy and IR analysis, and they were found to contain a chelating alkyl ketone.^{2a,5b,11} Compound **3b** was synthesized starting from [(dppf)PdCH₃(CH₃CN)]⁺CF₃SO₃⁻ (**1b**)^{6c} and CO at -60 °C in CH₂Cl₂, and the resulting acetyl complex was made to react with

(10) ¹H NMR analysis of the MeOD solution and of the gas cap after the polymerization of entry 2 showed no detectable formation of MeOH and of deuterated ethene, respectively. On the basis of a degree of polymerization of ca. 150 ethene units/CO unit, ca. 50% chain transfer via mechanism B, and only 50% scrambling via H/D exchange during this chain-transfer, the overall scrambling would be less than 0.2%.

^{*} To whom correspondence should be addressed.

[†] University of Amsterdam.

[‡] Shell Research and Technology Centre, Amsterdam.

⁽⁹⁾ Zudin, V. N.; Chinakov, V. D.; Nekipelov, V. M.; Rogov, V. A.; Likholobov, V. A.; Yermakov, Y. I. *J. Mol. Catal.* **1989**, *52*, 27.

^{(11) (}a) Ozawa, F.; Hayashi, T.; Koide, H.; Yamamoto, A. J. Chem. Soc., Chem. Commun. **1991**, 1469. (b) Markies, B. A.; Rietveld, M. H. P.; Boersma, J.; Spek, A. L.; van Koten, G. J. Organomet. Chem. **1992**, 242, C12. (c) Markies, B. A.; Kruis, D.; Rietveld, M. H. P.; Verkerk, K. A. N.; Boersma, J.; Kooijman, H.; Lakin, M. T.; Spek, A. L.; van Koten, G. J. Am. Chem. Soc. **1995**, 117, 5263.

 Table 1.
 Preparation of Ethene/CO Copolymers in Methanol and Methanol- d_1

		temp (°C)	rate $(kg \cdot g^{-1} \cdot h^{-1})$	$M_{ m n}{}^b$	¹³ C NMR end group analysis (%)				
entry ^a	solvent				ester	ethyl	CH_2CH_2D	CHDCH ₃	CH ₂ CH ₃
1	CH ₃ OH	95	10.8	5900	51	49			100
2	CH ₃ OD	96	8.0	8500	50	50	26	46	28

^{*a*} Experiments were carried out in 160 mL (90 mL of CH₃OD) or 250 mL (140 mL of CH₃OH) autoclaves at 55 bar; catalyst precursor Pd(OAc)₂: dppp:*p*-toluenesulfonic acid = 0.020:0.022:0.045 mmol; time 1 h; rate in (kg of polymer/g of Pd)/h. ^{*b*} Molecular weight determined via end group analysis (¹³C and ²H NMR).

ethene at -20 °C. Crystals suitable for X-ray diffraction analysis were obtained from a solution of **3b** in CH₂Cl₂/Et₂O. The crystal structure proves the coordination of the carbonyl group to palladium.¹² The in situ reaction of **3b** with ¹³CO in CD₂Cl₂ at -40 °C showed that [(dppf)Pd¹³C(O)CH₂CH₂C(O)CH₃(¹³CO)]⁺-CF₃SO₃⁻ (**7b**) formed.

An NMR spectroscopy study of **3a,b** showed that these complexes are unstable at room temperature, and rearrange $(t_{1/2} \approx 1 \text{ h}, \text{ in } \text{CD}_2\text{Cl}_2)$ to the palladium enolates (**4**) (eq 3). In the ¹H NMR spectrum the characteristic multiplets of the methylenes of **3a** at 1.47 and 3.22 ppm declined in favor of two new multiplets at 0.64 and 3.87 ppm with relative intensities of 3:1, respectively. In the ³¹P NMR spectrum a new pair of doublets arose. Upon addition of CD₃OD, **4a** was deuterated immediately, forming 3-deuteriobutan-2-one (**5**). When trimethylchlorosilane (TMSCl) was added to **4a**, the silyl enol ether **6**¹³ was obtained. Treatment

of 3a with CD₃OD led to the formation of CH₃CHDCOCH₃ (5) at a rate similar to that of the rearrangement of 3a into 4a, the concentration of 4a being very low now. Similarly, treatment of **3a** with TMSCl led to the slow formation ($t_{1/2} \approx 1$ h) of **6**, while no 4a could be detected. When compound 3b is stored in $\mbox{CD}_2\mbox{-}$ Cl₂ containing traces of water at -20° C, it decomposes in a few weeks to give $[(dppf)PdOH]^+_2[CF_3SO_3^-]_2$ (8b),¹⁴ a hydroxide palladium dimer, and 2-butanone in more than 95% selectivity according to ¹H NMR. No vinyl methyl ketone, the product of β -hydride elimination, was observed. To investigate the hydrolysis reaction in more detail, complex **3b** was dissolved in CD_2Cl_2 at -20 °C. When the temperature was raised to room temperature, a new complex formed which was characterized by the ¹H NMR spectrum. The new complex 4b was in equilibrium with **3b** (1:1 at 25 °C), and no formation of vinyl methyl ketone was observed. Thus, 3 isomerizes slowly to the enolate 4, which in the presence of electrophiles, such as TMSCl, water, or methanol, is trapped immediately (eq 3). Solutions of 1b in wet solvents did not lead to hydrolysis products, not even at elevated temperatures, showing that cationic palladium alkyl complexes are not prone to hydrolysis. The relevance of transition metal enolates to organic synthetic chemistry is well-documented.^{15,16} Saegusa et al.¹⁵ have prepared palladium enolates from Pd(OAc)₂ and silvl enol ethers. Remarkably, we obtained selectively the Z-isomer of 6, reflecting the chelating structure of its precursor (3a).

Treatment of the ester analogue of **3a**, $[(dppp)PdCH_2CH_2-C(O)OCH_3]^+CF_3SO_3^-$ (**9**), with CH₃OD yielded CH₃CHD-COOCH₃.¹⁷ Thus, also in this instance isomerization to the enolate occurred prior to the deuteration.¹⁸ A palladium enolate that cannot undergo β -hydride elimination was synthesized via an alternative route. Chloroacetone was oxidatively added to Pd-(0) at room temperature in benzene. The product was contaminated with about 4% of the dichloride complex. Subsequent addition of dppf and silver triflate in CH₂Cl₂ yielded the enolate, $[(dppf)Pd(\eta^3-CH(H')C(CH_3)O)]^+CF_3SO_3^-$, **10**.

The alkyl to enolate isomerization can be explained by a sequence of a slow β -elimination and a fast reinsertion into the palladium hydride (eq 4).¹⁹ The same mechanism has also been proposed as a step in the hydrocarbonylation of ethene to diethyl ketone.⁹

We thus conclude that there are two competing chain-transfer mechanisms in the alternating copolymerization of CO and ethene. One involves termination via an unexpected isomerization into the enolate followed by protonation with methanol and subsequent initiation by insertion of CO in the palladium methoxy species. Interestingly, the rate of this reaction should be independent of the concentration of the protic species. The second one comprises termination via methanolysis of the acylpalladium species and subsequent initiation by insertion of ethene into the palladium hydride bond.

Acknowledgment. M.A.Z. is grateful to Shell Research and Technology Centre, Amsterdam, for financial support, and we thank Drs. W. P. Mul and E. Drent for stimulating and helpful discussions.

Supporting Information Available: Spectral data of **3**, **4**, **5**, **6**, **7b**, **8b**, **9**, and **10** (17 pages, print/PDF). See any current masthead page for ordering information and Web access instructions.

JA980914+

⁽¹²⁾ Zuideveld, M. A.; Kamer, P. C. J.; van Leeuwen, P. W. N. M. To be published.

⁽¹³⁾ For the ¹H and ¹³C NMR data of **6** see the Supporting Information. The structure of **6** was confirmed by comparison of these data with those of an authentic sample prepared according to House, H. O.; Czuba, L. J.; Gall, M.; Olmstead, H. D. *J. Org. Chem.* **1969**, *34*, 2324.

⁽¹⁴⁾ Longato, B.; Pilloni, G.; Valle, G.; Corain, B. Inorg. Chem. 1988, 27, 956.

⁽¹⁵⁾ Saegusa *et al.* described the preparation of palladium(II) enolates from Pd(OAc)₂ and silyl enol ethers. In acetonitrile the enolates were prone to β -elimination. They do not describe any reaction of their enolates with proton sources: (a) Ito, Y.; Hirao, T.; Saegusa, T. J. Org. Chem. **1978**, 43, 1011. (b) Ito, Y.; Aoyama, H.; Hirao, T.; Mochizuki, A.; Saegusa, T. J. Am. Chem. Soc. **1979**, 101, 494. (c) Ito, Y.; Nakatsuka, M.; Kise, N.; Saegusa, T. Tetrahedron Lett. **1980**, 21, 2873.

^{(16) (}a) Tsuda, T.; Chujo, Y.; Nishi, S.; Tawara, K.; Saegusa, T.; J. Am. Chem. Soc. 1980, 102, 6381. (b) Burkhardt, E. R.; Bergman, R. G.; Heathkock, C. H. Organometallics 1990, 9, 30. (c) Wanat, R. A.; Collum, D. B. Organometallics 1986, 5, 120. (d) Balegroune, F.; Grandjean, D.; Lakkis, D.; Matt, D. J. Chem. Soc., Chem. Commun. 1992, 1084. (e) Hartwig, J. F.; Bergman, R. G.; Andersen, R. A. Organometallics 1991, 10, 3326, 3344.

⁽¹⁷⁾ **9** was prepared *in situ* by adding methyl acrylate to $[(dppp)-(PPh_3)PdH]^+/CF_3SO_3^-$ in the presence of an excess of sulfur (to oxidize PPh_3). Due to decomposition and isomerization we were not to able to isolate **9**.

⁽¹⁸⁾ This result is in contrast with results reported by Ashby and Halpern who performed the Ru(BINAP)(O₂CR)₂-catalyzed hydrogenation of tiglic acid (MeCH=C(Me)COOH) using H₂ and CD₃OD and obtained MeCHDCH(Me)-COOH without the apparent intermediacy of metal enolates: Ashby, M. T.; Halpern, J. J. Am. Chem. Soc. **1991**, *113*, 589.

 $^{(\}bar{1}9)\,As$ no vinyl ketone end groups are formed lb we conclude that the reinsertion must be fast.